
Abstract
Point cloud completion is essential for robust 3D perception in safety-critical applications such as robotics and augmented reality. However, existing models perform static inference and rely heavily on inductive biases learned during training, limiting their ability to adapt to novel structural patterns and sensor-induced distortions at test time. To address this limitation, we propose PointMAC, a meta-learned framework for robust test-time adaptation in point cloud completion. It enables sample-specific refinement without requiring additional supervision. Our method optimizes the completion model under two self-supervised auxiliary objectives that simulate structural and sensor-level incompleteness. A meta-auxiliary learning strategy based on Model-Agnostic Meta-Learning (MAML) ensures that adaptation driven by auxiliary objectives is consistently aligned with the primary completion task. During inference, we adapt the shared encoder on-the-fly by optimizing auxiliary losses, with the decoder kept fixed. To further stabilize adaptation, we introduce Adaptive λ-Calibration, a meta-learned mechanism for balancing gradients between primary and auxiliary objectives. Extensive experiments on synthetic, simulated, and real-world datasets demonstrate that PointMAC achieves state-of-the-art results by refining each sample individually to produce high-quality completions. To the best of our knowledge, this is the first work to apply meta-auxiliary test-time adaptation to point cloud completion.
Method

Results


BibTeX
@article{jiang2025pointmac,
title={PointMAC: Meta-Learned Adaptation for Robust Test-Time Point Cloud Completion},
author={Jiang, Linlian and Ma, Rui and Gu, Li and Wang, Ziqiang and Zuo, Xinxin and Wang, Yang},
journal={arXiv preprint arXiv:2510.10365},
year={2025}
}